Archive
- December 2024
- November 2024
- September 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- October 2022
- April 2022
- March 2022
- December 2021
- November 2021
- September 2021
- August 2021
- March 2021
Case Study
In this study we examine the impact of integrating a fleet of Enoda PRIME® Exchangers (“Prime Exchangers”) coordinated by Enoda ENSEMBLE™ into the Texas grid through the Business As Usual (“BAU”) case.
BAU operation of around 25,000 400kVA Prime Exchangers can allow for reduction of up to 3,855.8 tonnes of CO2 in the Regulation-Up market (“RegUp”) on June 21st, 2023. This fleet of 25,000 devices would have been sufficient on this day to completely saturate the regulation up market.
Such a fleet would have reduced carbon emissions of just one of the frequency and ancillary services, RegUp, by 54%, and would also enable Texans to benefit from Enoda’s ability to provide these services at lowest marginal cost.
How Enoda’s technology can help address Greenhouse Gas Scope 1, 2 and 3 emissions
Enoda’s HERA® technology can help to drive down Scope 1, 2 and 3 emissions across industries, including the difficult loads identified above; therefore, the technology is capable of truly driving Net Zero outcomes in our lifetime.
Russia will dominate energy security until the grid is fit for renewables
Coal is political and environmentally untenable. Nuclear is politically unpalatable in many places, unaffordable, and following Russia’s attack on the Zaporizhzhia, Europe's largest nuclear plant, an unacceptable security risk. The inflexibility of nuclear power station output also makes nuclear difficult to integrate with the variable demand of electric vehicles. I worry that many countries will sacrifice their climate goals to achieve security through a system that combines electrification of transport and coal-fired power. We do not have to do this.
Why dynamic harmonisation of energy systems is the key to the next phase of decarbonisation
Electrification with renewables will be the primary mode of the energy transition, and its weaknesses are causing the transition to stall. It’s time to discover dynamic harmonisation, the means by which we can optimally integrate multiple modes of energy and the work that it powers.