Archive
Case Study
In this study we examine the impact of integrating a fleet of Enoda PRIME® Exchangers (“Prime Exchangers”) coordinated by Enoda ENSEMBLE™ into the Texas grid through the Business As Usual (“BAU”) case.
BAU operation of around 25,000 400kVA Prime Exchangers can allow for reduction of up to 3,855.8 tonnes of CO2 in the Regulation-Up market (“RegUp”) on June 21st, 2023. This fleet of 25,000 devices would have been sufficient on this day to completely saturate the regulation up market.
Such a fleet would have reduced carbon emissions of just one of the frequency and ancillary services, RegUp, by 54%, and would also enable Texans to benefit from Enoda’s ability to provide these services at lowest marginal cost.
The Hidden Costs of Delivered Renewable Energy
Renewable energy has become a crucial component of the global energy transition. LCOE has been instrumental in assessing the competitiveness of renewable energy technologies, but it fails to capture the full picture of costs associated with their integration into the grid.
Exactly What are Balancing Costs?
The electrical grid is a marvel of engineering that delivers electricity to our homes and businesses, but it requires a delicate balancing act to maintain a consistent supply of electricity to end consumers.
More Please…
Increasing renewable energy generation does not mean lower prices for the end consumer, despite there being zero fuel-costs. Why is this the case and what needs to happen to change this?
Russia will dominate energy security until the grid is fit for renewables
Coal is political and environmentally untenable. Nuclear is politically unpalatable in many places, unaffordable, and following Russia’s attack on the Zaporizhzhia, Europe's largest nuclear plant, an unacceptable security risk. The inflexibility of nuclear power station output also makes nuclear difficult to integrate with the variable demand of electric vehicles. I worry that many countries will sacrifice their climate goals to achieve security through a system that combines electrification of transport and coal-fired power. We do not have to do this.
Why dynamic harmonisation of energy systems is the key to the next phase of decarbonisation
Electrification with renewables will be the primary mode of the energy transition, and its weaknesses are causing the transition to stall. It’s time to discover dynamic harmonisation, the means by which we can optimally integrate multiple modes of energy and the work that it powers.
To unlock the energy transition, see electricity as a wave, not a commodity
This is the third in a series of reports on understanding the energy transition. Previous reports have looked at the roles of oil and hydrogen. This one looks at the role of the electricity grid and why our conception of value in the electricity system is holding back the energy transition.
Hydrogen will be a cornerstone of the energy transition, but doesn’t replace oil
Hydrogen has a cornerstone role to play in the next round of the transition. The question is where hydrogen will outcompete other modes, like electricity and refined petroleum.